
The Art of Solving Problems with Computers

Howard S Modell
The University of Phoenix

Copyright 2002, Howard S. Modell

Introduction.

Programming, Music, Art*, and Magic are surprisingly related activities. They all

involve the use of creativity and insight, although neither of those traits is a requirement.

Just as almost anyone can learn to play an instrument† so, too, almost anyone can learn to

write computer programs. It doesn’t mean that you can do the activity well; talent still

counts for something, but it doesn’t take talent to produce notes on an instrument, or to

paint-by-the-numbers, or to design and code simple programs. As for what Programming

and Magic have in common, for now all I will say is that:

 The Naming Of Names is important;

 Mastery of Rituals is important;

 the use of Diagrams can be very helpful;

 and Repeatability is a Virtue. I will discuss this more later.

The abilities required to be able to design computer programs include: being able

to delineate a procedure for accomplishing the task “by hand”; being able to recognize

the different kinds of data involved in the task, and to determine ways in which that data

can be organized to make it easier to work with; and lastly (and actually the easiest part)

to be able to model the procedure into the terms and syntax of some programming

language [PL].

Of the “required abilities”, the most critical one is the first one, to be able to

describe the procedure required for performing the task involved. It is essential that,

before you can even try to “tell” the computer how to solve a problem that you have to

know how to solve it. It may well be that the solution you know is inconvenient or even

* By “Art” I mean graphical arts like Painting and Sculpting.
† so long as one is neither totally tone-deaf nor unable to sustain a ‘beat’

impractical for a human to do* but as long as it would solve the problem, it can be

considered a valid procedure..

That solution description can be set down in different ways, each one with its own

strengths and weaknesses. One can use plain English, or an “Input-Process-Output”

(IPO) chart, or a flowchart, or pseudo-code (to name just 4 ways). There’s also nothing

to stop one from using multiple methods, starting from a general description and refining

it in different ways as one goes along. Whatever methodology one uses, whatever

notation one works with, the important thing is to account for all the steps involved. You

must always keep in mind that computers are functional “morons”. A computer does not

know anything; a computer does only what you can tell it to do, and it will do it exactly

the way that you tell it to do it, it will repeat any mistake perfectly and repeat ably, and it

won’t stop what it is doing unless and until you tell it to stop.

A Simple Problem
Let’s look at a simple problem and see where it leads us.

The Problem : Determine if a specified number ‘N’ is a ‘Prime Number’

First, we need to think about the problem (analyze it) and convince ourselves that

we understand it. We ask ourselves, “what is a ‘Prime Number’?” In Mathematics, a

“Prime Number” is defined as a positive integer (i.e., a whole number) with the property

that its only whole divisors are itself and 1. For “J” to be a “whole divisor of N” means

that when J divides N, the remainder-after-division is 0†. For example, when 3 divides

10, the result is 3 with a remainder of 2.

The Analysis
That sounds like a fairly straightforward definition. We can visualize a “Prime-

ness test” procedure along the lines of:

* just because you could count to a googol -- a BIG number, represented by a 1 followed
by 100 zeros -- by ones doesn’t mean that you can do so in useful time, before you
become old and feeble
† Another way of saying this is “N modulus J is 0”

For any given number N, we can try dividing it by all the successive
integers from 1 up-to-and-including N itself, looking at the remainders-
after-division. If any of the divisors other than 1 and N produce a
remainder of 0, then N is not “Prime”; otherwise it is.

We can rewrite this as a “program-like” procedure this way:

1. accept an integer as input, store it as the value of a variable “N”

2. compute the consecutive integers from 1 up to N (inclusive), and …

3. … for each integer, (call it “J”), calculate the value of N modulus J.

4. If the result of (3) is 0 and J is neither 1 nor N, then tell the user that “N is

not a Prime Number”.

5. If the result of (4) is non-zero, then repeat steps 3 through 5 until you’ve

finally tested N with itself. If you get to the point of calculating N

modulus N, then you’re done and you can tell the user “N is a Prime

Number”.

One thing to be very careful about during the design process is “stay general”. Do

not design your solution in terms of any programming language. “Language shapes

Thought”: the vocabulary we use, the concepts we can verbalize, the concepts that occur

to us, the way we structure statements can have a “freezing” effect on the design process,

making it difficult if not impossible to see a useful procedure or technique just because

the particular language you’re thinking in doesn’t inspire thoughts of that particular

solution. Be prepared to consider an algorithm or technique that worked for a similar

situation previously, even if the PL used at the time isn’t one you might be considering

for this situation.

IPO Chart
Inputs

N (integer to test for
“Primeness”

Processing
For each integer “J” from 1
to N, calculate N%J.
 If result is 0 and

J!=1 and J!=N, then N is
NOT a Prime number
 If no J divides N

except 1 and N, then N is a
Prime number

Output

“N is NOT Prime”

Prime number “N is Prime”

FLOWCHART
We can try creating a flowchart to diagram the logic and analyze it that way. A

flowchart is a diagram where directed lines (i.e., lines with direction .. “arrows”) connect

different symbols in such a way that by following the arrows we flow with the logic of

the program from START to FINISH. The different geometrical shapes are used to

represent parts of the procedure, each shape being used for a different kind of part

(calculation, decision, cycle, etc.)

The symbols we use in flowcharts are:

Represents a calculation

Used to denote a decision (test) point

Used to indicate a point where the

program waits for input from user

Used to indicate a point where the

program displays information to the

user

Denotes the destination of a branch or

cycle.

Used to indicate the START and

STOP points of the logic flow

Table 1. common flowcharting symbols

If we drew a flowchart for the procedure we have so far, we’d come up with

something like Figure 1.

Figure 1. FLOWCHART of Simple Solution

START
Accept
integer

N

Calculate integers
from 1 to N,
calling each one J

Result
Zero?

Calculate N Modulo J
for each J

FALSE

J==1?

TRUE

FALSE

N is Prime
N is NOT
Prime

TRUE

FINISH

J==N?

F

T

Creating Source Code

We can try to code what we have, and we’d come up with something like this

(coding in C++):

#include <iosteam>

using namespace std;

void main ()

{

int N, J;

cin > N;

for (J=1; J<=N; J++) {

if (N%J == 0) {

if (J==1) continue;

if (J != N) {

cout << “N is NOT Prime” << endl;

exit;

}

}

}

cout << “N is Prime” << endl;

}

Second Thoughts and Revisions
The program as written will work, but it is very much a “brute force” approach.

For one thing, it tests “N modulo 1” which is always going to result in 0. So one thing

we could do to make the logic a bit easier is start the set of divisors with 2. But, ah hah!,

while 2 is a Prime number, it is the only even Prime number. Thus, if N%2 is 0, then N

is an even number and can’t be a Prime number. Therefore, we don’t need to use any

even integer except 2. So now we’ve determined that we only need to divide N by the

odd integers greater than 1.

We could stop there, but there is one more thing we can do to make our program

better still. A little thought tells us that if “x” divides N, then so does N/x. So if x does

NOT divide N, then neither will N/x. So we really only need to consider the odd integers

up to the square root of N*. If we haven’t found a whole divisor by the time we try

square-root(N)+1, then we’re not going to find one at all and we can conclude that N is

Prime. This gives us a slightly better program thusly:

#include <iostream>

using namespace std;

void main()

{

int N, J;

cin >> N;

if (N == 1) goto NotPrime;

if (N == 2) goto Prime;

if (N%2==0) goto NotPrime;

for (J=3; (J*J<=N); J++)

{

if (J%N == 0) goto NotPrime;

}

Prime:

cout << "N is Prime" << endl;

exit (0);

NotPrime:

cout << "N is NOT Prime" << endl;

exit (0);

}

* the “square root”, S, of a number N is the value such that S*S == N. This makes is sort
of a “median” divisor of N in that all the other divisors are either <S or >S.

Summary
The example in this paper is a relatively trivial problem and solution, but it does

nicely illustrate some of the aspects of program design. We should never dive straight

into coding. At the very least we should think about the problem we are attempting to

solve, if only to make sure that we understand the problem properly and completely.

Then, regardless of whether you use flowcharting, IPO charts, pseudo-code, or some

other “design-capture” method, it is always better if you put your solution ideas into a

form so that you can examine them, evaluating those ideas to see if your proposed

solution covers the whole of the problem.

Capturing the logic of the proposed program into a document of some kind also

makes it easier to check your logic (i.e., to “desk check” it). It is, by the way, perfectly

permissible to solicit someone else to review your proposed solution with you. Often a

fresh pair of eyes may see something where you are so familiar with your own ideas that

you can miss the obvious.

Once you’ve determined that your proposed procedure is good enough, you can

translate it into source code. The translation process should be relatively easy, but if it is

too easy, then you may have let your knowledge/familiarity with the particular PL

influence the design too much. For most solutions, the design should be as “platform-

independent” as you can keep it. The only times when it is useful to design for a specific

platform (hardware or software) is when the explicit advantages of that platform can be

shown to outweigh the arguments for “staying general”. [Certainly, programming with

domain-specific languages like GPSS (for simulations), APL (mathematics), SNOBOL4

(string-processing and pattern-matching), or Prolog (formal logic) produces more elegant

solutions for problems in that domain than would trying to use a general-purpose

language.] Just as some instruments are easier for some people to use than they are for

others, so too are some programming languages easier for some people to work in. If you

spend most of your time working problems in a specific “problem domain”, see if there is

a PL designed to work well in that domain.

Having finally chosen a PL for implementation, if it provides facilities for

building “testing” into the program itself, make use of such features. Features like

macros, “assertions”, and exception-handling may well allow you to find logic errors

faster than trying to do it by “eye”. If the compiler is part of an “Integrated Development

Environment”, use its facilities, especially the “run-time debugger” if there is one.

The Art of Programming is no more difficult than learning to play an musical

instrument is, and takes just as much Time and Effort. Like Music and Graphic Arts,

program design comes more easily the more you practice it.

The Magic of Programming

As mentioned briefly above, there are aspects of Programming that have a distinct

“magical” feel to them. When we engage ourselves in programming, there is often a

feeling that we’re trying to convince the computer to do what we want it to. In its loosest

context, “Magic” can be defined as a “methodology” which combines “material

components” (charts, potions, icons, etc.) and “verbal components” (proper spells and

chants) in various ways to control the environment and “make things happen”. A

“sorcerer” (“sourcerer”?) at work knows that everything must be set up “just so” if this

spell or incantation is going to accomplish its purpose.

The Naming of Names.

When composing spells, drawing charts, or even writing things in one’s grimoire,

a sorcerer knows that he must correctly and accurately name the things and Beings he

will reference. Misnaming a “demon” can get you either the Wrong Demon or a very

Angry Demon. In the context of programming, naming things correctly and accurately is

also of critical importance. When programming in a language like PL/1 where keywords

are not reserved, using them as variable can generate confusion very easily, as for

example

IF IF THEN THEN ELSE ELSE;

Things are a little better in languages like PASCAL or C/C++ where keywords

are reserved, but in all programming languages “an identifier is an identifier is an

identifier”. Generally, any of the identifiers created by the programmer can be used in all

contexts where “identifier” is valid. Languages with “strong typing” help a little, by

adding the restriction that a variable can only be used in a context appropriate to its

declared “type”. But it is still the case that any integer variable can be used in an integer-

context. The compiler has no way of knowing that ItemPrice1 was what you meant to

use and not ItemPrice10.

Programmers are often taught that “names are better than literals”. If the PL

allows for it, using macros or “compile-time constants” to give names to constants is

supposed to be a Good Thing. And, yes, using ONE instead of 1 makes for a potentially

more readable and more maintainable program. The problem here, and what isn’t always

taught, is that names should be meaningful . While ONE is better than 1,

ItemCount_InitialValue is better still, and less likely to cause problems down the line

when the design changes and ItemCount_InitialValue needs to be 5. A lot of

programmers are used to using I , J, K as loop-counter variables. All well and good,

especially if those variables really are just used in the context of those loops, but it is still

very easy to mistype J for I and not realize it unless you have a good debugging tool to

work with.

Diagrams and Charts: The Use of Visual Aids

Every Astrologer knows that the Chart is everything. You can tell the client

anything, but they’ll be more likely to believe you if you have a good, flashy Chart to

show them. And, charts are much easier to work with in composing a horoscope that

simple columns of numbers are. Our distant ancestors know about the Usefulness of

Diagrams, too. It is commonly believed that a lot of the cave paintings we’ve found are

probably rudimentary attempts at “hunting magic”: draw a picture of an animal being

brought down by hunters with spears and it may cause that happening to come about the

next day. Sorcerers drew pentagrams on the floor as the means to delineate where they

and their assistants had to stand, and where the Thing Summoned would be caged.

In the context of programming, we have our versions of astrological charts and

pentagrams. Just as a magician is ill-advised just to “dive straight into his spell” without

thinking about what he needs to do first, so too should a program designer takes some

time to think out his design before ever composing a line of code. The value of methods

like IPO charts and flowcharts is simply that they force the program designer to attempt

to list the data and the processing logic in language-independent ways. Just as using

runes and other symbolic languages can help a magician to properly compose the spell he

has in mind, so too can pseudo-code help a program designer to visualize the logic of the

program he has in mind.

The Importance of Ritual: Saying the Right Things in Correct Fashion.
Leaving aesthetics and “customer satisfaction”* aside, sorcerers knew that it

wasn’t just important to know What to say, but How to phrase it. Demons reacted better

(it was thought) to flowery, flattering phrases than they did to commands. The ritual

worked (?) when you Named the Four Compass Points (homes presumably to the Winds)

in the Correct Order. Any spell had to be written following the “formula” correctly:

light the candles in the Correct Order, throw just the Right Amount of Incense into the

brazier at just the Right Time, and so forth, if you wanted it to have a hope of working.

Certainly, it is easy to point out the frustration that comes from simple syntax

errors arising from careless behavior on our part – leaving out a semi-colon, for example,

or forgetting to add a closing quotation-mark (thus sucking all of the program code

following the offended string into that string). PL’s have very definite syntax,

constraining how things can be specified and sometimes even the order of the program

elements (e.g., variables and functions must be declared before their first reference).

Repeatability is a Virtue

One of the places where the analogy between Magic and Programming breaks

down is in the area of “repeatability”. Much as they might try, magicians and alchemists

had a very difficult time getting the same result twice*. Computers are blithe morons,

fully capable of repeating actions forever (or until the next power outage). Even where

we try to build in “randomness” into the algorithm, we can only partially succeed. PL’s

that provide “pseudo-random number generators” also point out what the “pseudo-“

* Priests and Shaman have long known that their followers are much easier to lead and
much more content with “the show” if it is done in Latin or some other language that the
audience doesn’t know. What I thought was a prayer that was an essential part of a
Jewish service I used to participate in turned out to be, upon looking at the translation on
the opposing page, a recipe for incense.

aspect means: if you “seed” the generator with the same number, it will produce the same

sequence of numbers it did the previous time.

On the other hand, even wizards knew the value of documentation. The whole

point of writing down a Spell was to promote its repeatability, even if only by the wizard

in question (“I did this, then this, then this … and this resulted!”). While “throw-away”†

code is a common enough phenomenon, it is more the case that a program once written

and debugged will be used again and again. Thus, a program should be written so that it

is understandable, preferably in conjunction with internal documentation (comments) that

describe the salient points and features of the solution.

Parametric Magic

With this goal (i.e., re-use) in mind, programmers are encouraged to enhance this

future use by parameterizing their program, designing them so that certain data comes in

from the outside which the program processes to decide what to do this time. Just as a

Spell or Alchemical Recipe might have places where certain “legal substitutions”‡ might

be made to vary the outcome, so too should programs be “re-usable”, able to perform the

same chores with different data, perhaps in slightly varied ways.

Coda

It can not be stated strongly enough here that the preceding was intended for

entertainment. No claim is being made that “Magic” has ever existed or worked outside

of a theater. Computers, while their mechanisms often seem magical to the casual user,

are entirely understandable, and produce results that are always repeatable (and most of

the time, reliable).

* On the other hand, they did get very good at coming up with excuses why things didn’t
work the way they expected to.
† Code written to solve a problem now that we “know we won’t ever need again…”
(yeah, right!)
‡ material spell components were often specified or selected because of certain abstract
properties they had; if you were trying to levitate something, you might include a bird’s

That being said, it is amusing to note all the similarities and parallels in the two

world-views represented. Both “arts” seek to provide Control, whether it be over

“spirits” and the “elements”, or whether it is over mounds of numbers or useful

“devices”. Both arts work better when the practioner exercises their minds properly and

does proper preparation rather than simply “diving in” and “just doing it”. Both arts are

enhanced by good documentation discipline.

If Merlin had had electronic computers available to him, what could he have

accomplished?

wing. If you couldn’t find something that the recipe called for, you could substitute
something with similar properties or associations.

	
	
	
	
	
	
	
	
	
	
	

